

TEST REPORT

Product Name : CM3588S system-on-module

Model Number : CM3588S

Prepared for : BOARDCON EMBEDDED DESIGN LIMITED

Address : 2508-2509 Haofang Tianji Plaza, 11008 Beihuan Avenue,

Nanshan District, Shenzhen, Guangdong, China. 518051

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2411260020E00101R

Date(s) of Tests : December 07, 2024 to December 16, 2024

Date of issue: December 19, 2024

TABLE OF CONTENT

Description	Page
1. DESCRIPTION OF STANDARDS AND RESULTS (EUT)	6
2. GENERAL INFORMATION	7
2.1. Description of Device (EUT)	7
2.2. Independent Operation Modes	
2.3. Test Manner	
2.4. Description of Support Device	g
2.5. Description of Test Facility	9
2.6. Measurement Uncertainty	
3. MEASURING DEVICE AND TEST EQUIPMENT	11
3.1. For Conducted Emissions at the AC Mains Power Ports	11
3.2. For Asymmetric Mode Conducted Emissions at Wired Network Ports	11
3.3. For Radiated Emission Measurement (3m)	
3.4. For Harmonic Current / Flicker Measurement	
3.5. For Electrostatic Discharge Immunity	
3.6. For Continuous RF Electromagnetic Field Disturbances Immunity	
3.7. For Electrical Fast Transient / Burst Immunity	
3.8. For Surges Immunity	
3.9. For Continuous Induced RF Disturbances Immunity	
3.10. For Power Frequency Magnetic Field Immunity	
4. CONDUCTED EMISSIONS FROM THE AC MAINS POWER PORTS	
4.1.Block Diagram of Test Setup	
4.3. Test Procedure	
4.4. Measuring Results	
5. ASYMMETRIC MODE CONDUCTED EMISSIONS AT WIRED NETWORK PORTS	
5.1.Block Diagram of Test Setup	
5.2. Limits	
5.3. Test Procedure	
5.4. Measuring Results	
6. RADIATED EMISSION MEASUREMENT (UP TO 1GHZ)	
6.1.Block Diagram of Test Setup	21
6.2. Radiated Limit	
6.3. Test Procedure	21
6.4. Measuring Results	22
7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHZ)	25
7.1. Block Diagram of Test Setup	25
7.2. Radiated Limit	25
7.3. Test Procedure	
7.4. Measuring Results	26
8. HARMONIC CURRENT EMISSION MEASUREMENT	29
8.1. Block Diagram of Test Setup	
8.2. Standard Limits	
8.3. Test Procedure	
8.4. Test Results	
9. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	31
9.1.Block Diagram of Test Setup	
9.2. Standard Limits	
9.3. Test Procedure	31

9.4. Test Results	31
10. IMMUNITY PERFORMANCE CRITERIA DESCRIPTION	33
11. ELECTROSTATIC DISCHARGE	34
11.1. Test Specification	34
11.2. Block Diagram of Test Setup	
11.3. Test Procedure	
11.4. Test Results	35
12. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES	36
12.1. Test Specification	36
12.2. Block Diagram of Test Setup	
12.3. Test procedure	
12.4. Test results	37
13. ELECTRICAL FAST TRANSIENTS/BURST	38
13.1. Test Specification	38
13.2. Block Diagram of Test Setup	
13.3. Test Procedure	
13.4. Test Results	
14. SURGES	40
14.1. Test Specification	40
14.2. Block Diagram of Test Setup	
14.3. Test Procedure	
14.4. Test results	41
15. CONTINUOUS INDUCED RF DISTURBANCES	42
15.1. Test Specification	42
15.2. Block Diagram of Test Setup	
15.3. Test Procedure	
15.4. Test results	43
16. POWER FREQUENCY MAGNETIC FIELD	44
16.1. Test Specification	44
16.2. Block Diagram of Test Setup	
16.3. Test Procedure	
16.4. Test Results	45
17. VOLTAGE DIPS AND INTERRUPTIONS	46
17.1. Test Specification	46
17.2. Block Diagram of Test Setup	
17.3. Test Procedure	
17.4. Test results	47
18. PHOTOGRAPHS	48
18.1. Photos of Conducted Emissions from the AC Mains Power Ports	48
18.2. Photos of Asymmetric Mode Conducted Emissions at Wired Network Ports	
18.3. Photos of Radiation Emission Measurement	
18.4. Photo of Harmonic / Flicker Measurement	51
18.5. Photo of Electrostatic Discharges	
18.6. Photos of Continuous RF Electromagnetic Field Disturbances	
18.7. Photo of Electrical Fast Transients/Burst	
18.8. Photo of Surges	
18.9 Photos of Continuous Induced RF Disturbances	
18.10. Photo of Power Frequency Magnetic Field	
18.11. Photo of Voltage Dips and Interruptions	56

APPENDIX (Photos of the EUT) (2 pages)

TEST REPORT DESCRIPTION

Applicant : BOARDCON EMBEDDED DESIGN LIMITED

Manufacturer : BOARDCON EMBEDDED DESIGN LIMITED

Trade Mark : BOARDCON Embedded Design

EUT : CM3588S system-on-module

Model Number : CM3588S Power supply : DC 5V

Model: HA612

Switching Input: 100-240V~ 50/60Hz 0.5A

Adapter Output:5.0V --- 2.5A 12.5W, 9.0V --- 2.0A 18.0W, 12.0V --- 1.5A 18.0W

Measurement Procedure Used:

EN 55032: 2015+A1:2020

EN IEC 61000-3-2: 2019+A1:2021 EN 61000-3-3: 2013+A2:2021 EN 55035: 2017+A11:2020

(IEC 61000-4-2:2008, IEC 61000-4-3:2006+A1:2007+A2:2010, IEC 61000-4-4:2012, IEC 61000-4-5:2014, IEC 61000-4-6:2013, IEC 61000-4-8:2009, IEC 61000-4-11:2004)

The device described above is tested by EMTEK (SHENZHEN) CO., LTD. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and EMTEK (SHENZHEN) CO., LTD. is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 55032, EN 61000-3-2, EN 61000-3-3, EN 55035 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of EMTEK (SHENZHEN) CO., LTD.

Date of Test	:	December 07, 2024 to December 16, 2024
Prepared by	:	Yudiang Yuan XHEN
		Yuxiang Yuan/Editor
Reviewer	:	Kaimin Cuto
	_	Kaimin Guo/Supervisor
		ESTING
Approved & Authorized Sig	gner :	
		Lisa Wang/Manager

Modified Information

Version	Report No.	Revision Date	Summary
Ver.1.0 ENS2411260020E00101R		/	Original Report

1. DESCRIPTION OF STANDARDS AND RESULTS (EUT)

			EMISSION]		
Descr	iption of	Test	ltem	Standard	Limits	Results
Conducted Emissions Fi	rom the	AC Ma	ains Power Ports		Class B	Pass
	Wired ı	networ	k ports		Class B	Pass
Asymmetric mode	Optical	fibre p	oorts		Class B	N/A
conducted emissions	Broadc	ast red	ceiver tuner ports]	Class B	N/A
	Antenn	a ports	3]	Class B	N/A
	TV broa	adcast	receiver tuner ports	EN 55032	Class B	N/A
Conducted differential	RF mod	dulator	output ports		Class B	N/A
voltage emissions	FM bro	adcast	t receiver tuner ports		Class B	N/A
Radiated emissions at fr	equenci	es up	to 1 GHz		Class B	Pass
Radiated emissions at fr	equenci	es abo	ove 1 GHz		Class B	Pass
Radiated emissions from	FM rec	eivers			Table A.6	N/A
Outdoor units of home s	atellite r	eceivir	ng systems		Table A.7	N/A
Harmonic Current Emiss	sions			EN IEC 61000-3-2	Class D	N/A
Voltage Fluctuation and	Flicker			EN 61000-3-3	Section 5	Pass
			IMMUNITY	7		
Desci	ription of	Test l	ltem	Basic Standard	Performance Criteria	Results
Electrostatic Discharge		Enclo	sure ports	IEC 61000-4-2:2008	В	Pass
Continuous RF electrom field disturbances	agnetic	Enclosure ports		IEC 61000-4-3:2006+ A1:2007+A2:2010	А	Pass
		AC m	ains power ports		В	Pass
Electrical fast transients/	burst 'burst	Analo	gue/digital data ports	IEC61000-4-4:2012	В	Pass
		DC n	etwork power ports		N/A	N/A
		AC m	ains power ports		В	Pass
Surges		Analo	gue/digital data ports	IEC 61000-4-5:2014	С	Pass
		DC n	etwork power ports		N/A	N/A
		AC m	ains power ports		Α	Pass
Continuous induced RF disturbances		Analo	gue/digital data ports	IEC 61000-4-6:2013	Α	Pass
disturbances		DC no	etwork power ports		N/A	N/A
Power frequency magne		Enclo	sure ports	IEC 61000-4-8:2009	Α	Pass
Voltage dips and interrup	otions	AC m	ains power ports	IEC 61000-4-11:2004	B,C	Pass
Note: N/A is an abbreviat	ion for	Not A	oplicable.			

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : CM3588S system-on-module

Model Number : CM3588S

Test Voltage : AC 230V/50Hz, AC 120V/60Hz

Sample ID : ENS2411260020E001/1-1

Applicant : BOARDCON EMBEDDED DESIGN LIMITED

Address : 2508-2509 Haofang Tianji Plaza, 11008 Beihuan Avenue, Nanshan District,

Shenzhen, Guangdong, China. 518051

Manufacturer : BOARDCON EMBEDDED DESIGN LIMITED

Address : 2508-2509 Haofang Tianji Plaza, 11008 Beihuan Avenue, Nanshan District,

Shenzhen, Guangdong, China. 518051

Factory : BOARDCON EMBEDDED DESIGN LIMITED

Address : 2508-2509 Haofang Tianji Plaza, 11008 Beihuan Avenue, Nanshan District,

Shenzhen, Guangdong, China. 518051

Date of Received : December 07, 2024

Date of Test : December 07, 2024 to December 16, 2024

2.2. Independent Operation Modes

A : ON

1. Running with full systems

2.3. Test Manner

Test Items	Test Voltage	Operation Modes	Worst case
Conducted disturbance at mains Terminals	AC 230V/50Hz AC 120V/60Hz	Mode A	Mode A (AC 230V/50Hz)
Asymmetric mode conducted emissions at Wired network ports	AC 230V/50Hz	Mode A.1	Mode A
Radiated emissions at frequencies up to 1 GHz	AC 230V/50Hz AC 120V/60Hz	Mode A	Mode A (AC 230V/50Hz)
Radiated emissions at frequencies above 1 GHz	AC 230V/50Hz AC 120V/60Hz	Mode A	Mode A (AC 230V/50Hz)
Harmonic Current Emissions	AC 230V/50Hz	Mode A.1	\
Voltage Fluctuation and Flicker	AC 230V/50Hz	Mode A.1	/
Electrostatic Discharge	AC 230V/50Hz	Mode A	\
Continuous RF electromagnetic field disturbances	AC 230V/50Hz	Mode A	\
Electrical fast transients/burst	AC 230V/50Hz	Mode A	/
Surges	AC 230V/50Hz	Mode A	\
Continuous induced RF disturbances	AC 230V/50Hz	Mode A	\
Power frequency magnetic field	AC 230V/50Hz	Mode A	\
Voltage dips and interruptions	AC 230V/50Hz AC 120V/60Hz	Mode A	\

2.4. Description of Support Device

LCD Monitor : Manufacturer: LENOVO

M/N: 9227-AE6

S/N:4M0293084302824

CE, FCC

Laptop : Manufacturer: Lenovo

M/N: ThinkPad S2 Yoga 3rd Gen

S/N: R9-OR98VZ CE, FCC: DOC

Mouse : Manufacturer: Lenovo

M/N:MO28UOL S/N:44D2639 CE, FCC

Keyboard : Manufacturer: Lenovo

M/N:KB-0225 S/N: 41A5039 CE, FCC

2.5. Description of Test Facility

Site Description

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L2291.

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01.

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

Site Location : Building 69, Majialong, Industry Zone, Nanshan District, Shenzhen,

Guangdong, China

2.6. Measurement Uncertainty

Test Item Uncertainty

Conducted Emission Uncertainty : 1.56dB (9k~150kHz Conduction)

(Conduction 1#) 1.42dB (150k-30MHz Conduction)

Radiated Emission Uncertainty : 4.28dB (30M~1GHz Polarize: H)

4.86dB (30M~1GHz Polarize: V) (3m 3# Chamber)

4.90dB (1~6GHz)

Uncertainty for Flicker test : 0.514%

Uncertainty for Harmonic test : 4.04%

Uncertainty for C/S Test : 0.94dB(Using CDN Test)

2.37dB(Using EM Clamp Test)

Uncertainty for R/S Test : 1.53dB(80MHz-3000MHz)

Uncertainty for test site temperature : 0.6℃ 4%

and humidity

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. For Conducted Emissions at the AC Mains Power Ports

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	EMI Test Receiver	Rohde & Schwarz	ESCI	101384	May 11, 2024	1 Year
\checkmark	AMN	Rohde & Schwarz	ENV216	101161	May 10, 2024	1 Year
\checkmark	AMN	Kyoritsu	KNW-407	8-1492-9	May 11, 2024	1 Year

3.2. For Asymmetric Mode Conducted Emissions at Wired Network Ports

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	EMI Test Receiver	Rohde & Schwarz	ESCI	101384	May 11, 2024	1 Year
	AAN	TESEQ	ISN T800	30327	Nov. 01, 2024	1 Year
\checkmark	AAN	TESEQ	ISN T8-CAT6	32186	May 12, 2024	1 Year

3.3. For Radiated Emission Measurement (3m)

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 10, 2024	1 Year
\checkmark	Pre-Amplifie	Lunar EM	LNA30M3G-25	J10100000070	May 10, 2024	1 Year
\checkmark	Bilog Antenna	Schwarzbeck	VULB9163	661	June 02, 2023	2 Year
\checkmark	Horn antenna	Schwarzbeck	BBHA9120D	9120D-1178	Aug. 28, 2023	2 Year
V	Pre-Amplifie	SKET	LNPA_0118G-4 5	SK201905180 1	May 10, 2024	1 Year

3.4. For Harmonic Current / Flicker Measurement

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
V	45KVA AC Power source	Teseq	NSG 1007-45/45KVA	1305A02873	May 11, 2024	1 Year
$\overline{\mathbf{V}}$	Signal conditioning Unit	Teseq	CCN 1000-3	1305A02873	May 11, 2024	1 Year
\checkmark	Impedance network	Teseq	INA2197/37A	1305A02873	May 11, 2024	1 Year
\checkmark	Impedance network	Teseq	INA 2196/75A	1305A02874	May 11, 2024	1 Year
	Profline 2100 AC Switching Unit	Teseq	NSG 2200-3	A22714	May 11, 2024	1 Year

3.5. For Electrostatic Discharge Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	ESD Tester	EMTEST	Dito	P2220263883	Oct. 21, 2024	1 Year

3.6. For Continuous RF Electromagnetic Field Disturbances Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	Power Amplifier	MILMEGA	AS0102-55	1018770	May 11, 2024	1 Year
V	RF Power Meter. Dual Channel	BOONTON	4232A	10539	May 11, 2024	1 Year
V	LogPer. Antenna	SCHWARZBECK	STLP 9129-7/16	3050	N/A	N/A
\checkmark	Signal Generator	Agilent	N5181A	MY50145187	May 11, 2024	1 Year
V	50ohm Diode Power Sensor	BOONTON	51011EMC	36164	May 11, 2024	1 Year
\checkmark	Field Strength Meter	DARE	RSS1006A	10l00037SNO22	May 11, 2024	1 Year
V	Multi-function interface system	DARE	CTR1009B	12l00250SNO72	N/A	N/A
V	Automatic switch group	DARE	RSW1004A	N/A	N/A	N/A
\checkmark	Power Amplifier	MILMEGA	AS1860-50	1059346	May 11, 2024	1 Year
V	Power Amplifier	Vectawave	VBA 1000-600C	133627	Oct. 18, 2024	1 Year
V	Directional Coupler	BONN	BDC 0810-50/150 0	2229689	Oct. 18, 2024	1 Year
\checkmark	Audio Analyzer	R&S	UPV	101473	May 11, 2024	1 Year
V	Audio Test System	AUDIO PRECISION	ATS-1	41100	May 11, 2024	1 Year

3.7. For Electrical Fast Transient / Burst Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	Burst Tester	HAEFELY	PEFT4010	080981-16	May 12, 2024	1 Year
\checkmark	Coupling Clamp	HAEFELY	IP-4A	147147	May 12, 2024	1 Year

3.8. For Surges Immunity

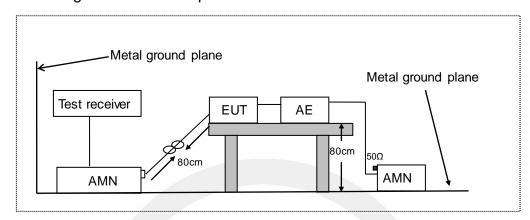
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
\checkmark	Controller	HAEFELY	Psurge 8000	174031	May 11, 2024	1 Year
\checkmark	Impulse Module	HAEFELY	PIM 100	174124	May 11, 2024	1 Year
\checkmark	Coupling Decoupling	HAEFELY	PCD 130	172181	May 11, 2024	1 Year
V	Coupling Module	HAEFELY	PCD122	174354	May 11, 2024	1 Year
\checkmark	Impulse Module	HAEFELY	PIM 120	174435	May 11, 2024	1 Year
\checkmark	Coupling Module	HAEFELY	PCD 126A	174387	May 11, 2024	1 Year
V	Impulse Module	HAEFELY	PIM 110	174391	May 11, 2024	1 Year
\checkmark	Impulse Module	HAEFELY	PIM 150	PIM 150 178707		1 Year
\checkmark	Impulse Module	PMI	PCDN8	190422	May 12, 2024	1 Year

3.9. For Continuous Induced RF Disturbances Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
V	Continuous Wave Simulator	EMTEST	CWS500C	0900-12	May 10, 2024	1 Year
	CDN	EMTEST	CDN-M2	510010010010	May 11, 2024	1 Year
\checkmark	CDN	EMTEST	CDN-M3	0900-11	May 11, 2024	1 Year
\checkmark	EM Injection Clamp	EMTEST	F-2031-23MM	368	May 12, 2024	1 Year
V	Attenuator	EMTEST	100W 6dB DC-3G	/	May 10, 2024	1 Year
V	Signal Generator	R&S	SMB100A	103041	May 10, 2024	1 Year
V	CDN	LUTHI	CDN L-801 M2/M3	2606	May 11, 2024	1 Year
V	Power meter	AGILENT	E4418B	MY45102886	May 11, 2024	1 Year
V	Directional coupler	SKET	DC_0110000M -100W	SK201808030 1	May 11, 2024	1 Year

3.10. For Power Frequency Magnetic Field Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
\checkmark	Magnetic Field Tester	HAEFELY	MAG100	250040.1	May 10, 2024	1 Year


3.11. For Voltage Dips And Interruptions Immunity

Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	45KVA AC Power source	Teseq	NSG 1007-45/45KVA	1305403873		1 Year
	Signal conditioning Unit	Teseq	CCN 1000-3	CCN 1000-3 1305A02873		1 Year
	Impedance network	Teseq	INA2197/37A	1305A02873	May 11, 2024	1 Year
	Impedance network	Teseq	INA 2196/75A	1305A02874	May 11, 2024	1 Year
V	Profline 2100 AC Switching Unit	Teseq	NSG 2200-3	A22714	May 11, 2024	1 Year

4. CONDUCTED EMISSIONS FROM THE AC MAINS POWER PORTS

4.1. Block Diagram of Test Setup

AMN: Artificial Mains Network AE: Associated equipment EUT: Equipment under test

4.2. Limits

EN 55032, Class B

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B limits dB(µV)
0.15 to 0.5			66 to 56
0.5 to 5	AMN	Quasi Peak / 9 kHz	56
5 to 30			60
0.15 to 0.5			56 to 46
0.5 to 5	AMN	Average / 9 kHz	46
5 to 30			50

4.3. Test Procedure

The EUT was placed on a desk 0.8 m height from the metal ground plane and 0.4 m from the conducting wall of the shielding room and it was kept at least 0.8 m from any other grounded conducting surface. The size of the table will nominally be $1.5 \text{ m} \times 1.0 \text{ m}$.

The rear of the arrangement shall be flush with the back of the supporting tabletop unless that would not be possible or typical of normal use.

All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units.

Connect EUT to the power mains through a artificial mains network (AMN). Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

All the support units are connecting to the other AMN.

The AMN provides 50 ohm coupling impedance for the measuring instrument.

The CISPR states that the AMN with 50 ohm and 50 microhenry should be used.

Both sides of AC line were checked for maximum conducted interference.

The frequency range from 150 kHz to 30 MHz was sweep.

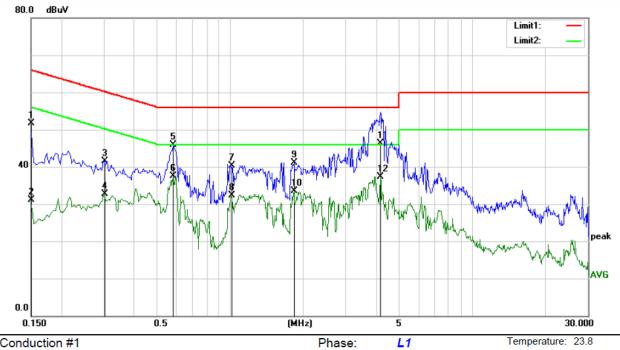
Set the test-receiver system to quasi peak detect function and average detect function, and to measure the conducted emissions values.

Test results were obtained from the following equation: Emission Level (dB μ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Emission Level (dB μ V) - Limit (dB μ V)

4.4. Measuring Results

PASS.

All the modes were tested and the data of the worst modes are attached the following pages.

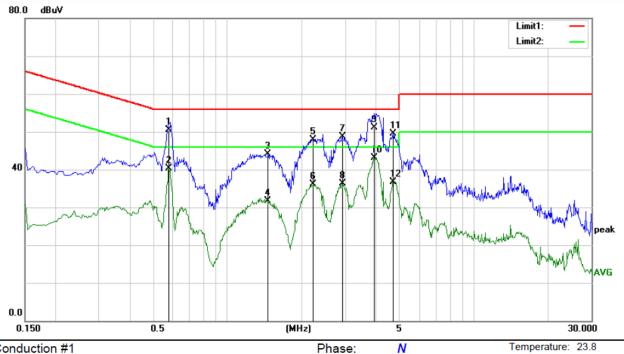

Temperature : 23.8°C
Humidity : 46%
Atmospheric
Pressure
Test Engineer : HSY

Test Date : 2024-12-09

Humidity:

46 %

Power: AC 230V/50Hz


Site Conduction #1

Limit: (CE)EN55032 class B_QP

Mode: ON Note:

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	41.79	10.01	51.80	66.00	-14.20	QP	
2	0.1500	21.03	10.01	31.04	56.00	-24.96	AVG	
3	0.3020	31.46	10.05	41.51	60.19	-18.68	QP	
4	0.3020	22.67	10.05	32.72	50.19	-17.47	AVG	
5	0.5820	36.02	9.97	45.99	56.00	-10.01	QP	
6 *	0.5820	27.55	9.97	37.52	46.00	-8.48	AVG	
7	1.0140	30.35	9.99	40.34	56.00	-15.66	QP	
8	1.0140	22.29	9.99	32.28	46.00	-13.72	AVG	
9	1.8300	31.07	9.97	41.04	56.00	-14.96	QP	
10	1.8300	23.56	9.97	33.53	46.00	-12.47	AVG	
11	4.1700	36.43	9.97	46.40	56.00	-9.60	QP	
12	4.1700	27.39	9.97	37.36	46.00	-8.64	AVG	

Phase:

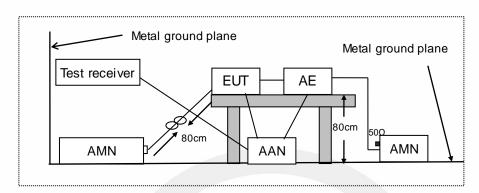
N Power: AC 230V/50Hz

Site Conduction #1

Limit: (CE)EN55032 class B_QP

Mode: ON Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.5780	40.53	9.97	50.50	56.00	-5.50	QP	
2	0.5780	30.29	9.97	40.26	46.00	-5.74	AVG	
3	1.4580	34.09	9.98	44.07	56.00	-11.93	QP	
4	1.4580	21.69	9.98	31.67	46.00	-14.33	AVG	
5	2.2180	38.02	9.97	47.99	56.00	-8.01	QP	
6	2.2180	26.20	9.97	36.17	46.00	-9.83	AVG	
7	2.9220	38.80	9.97	48.77	56.00	-7.23	QP	
8	2.9220	26.32	9.97	36.29	46.00	-9.71	AVG	
9	3.9620	41.13	9.97	51.10	56.00	-4.90	QP	
10 *	3.9620	33.16	9.97	43.13	46.00	-2.87	AVG	
11	4.7020	39.44	9.97	49.41	56.00	-6.59	QP	
12	4.7020	26.80	9.97	36.77	46.00	-9.23	AVG	


46 %

Humidity:

5. ASYMMETRIC MODE CONDUCTED EMISSIONS AT WIRED NETWORK PORTS

5.1. Block Diagram of Test Setup

AMN: Artificial mains network AE: Associated equipment EUT: Equipment under test

AAN: Asymmetric artificial network

5.2. Limits

EN 55032, Class B,

LIN 00002, Olass D,					
Frequency range (MHz)	Coupling device	Detector type / bandwidth	Class B voltage limits dB(µV)	Class B current limits dB(µA)	
0.15 to 0.5	AAN	Quasi Peak / 9 kHz	84 to 74		
0.5 to 30	AAN	Quasi Peak / 9 kmz	74	N1/A	
0.15 to 0.5	AAN	Average / 0 kl lz	74 to 64	N/A	
0.5 to 30	AAN	Average / 9 kHz	64		
0.15 to 0.5	CVP and current	Quasi Peak / 9 kHz	84 to 74	40 to 30	
0.5 to 30	probe	Quasi Peak / 9 km2	74	30	
0.15 to 0.5	CVP and current	Average / 9 kHz	74 to 64	30 to 20	
0.5 to 30	probe	Average / 9 Ki iz	64	20	
0.15 to 0.5	Current Probe	Quasi Peak / 9 kHz		40 to 30	
0.5 to 30	Cullent Plobe	Quasi Feak / 9 KHZ	N/A	30	
0.15 to 0.5	Current Probe	^\v0rago / 0 k \-	IWA	30 to 20	
0.5 to 30	Current Probe	Average / 9 kHz		20	

5.3. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through artificial mains network(AMN) or connected to the wired network port through an asymmetric artificial network(ANN). AMN provided a 50ohm coupling impedance for the tested equipment AC mains port, ANN provided a common mode (asymmetric mode) impedance of 150 Ω to the wired network port under test. Both sides of AC line and the wired network line are investigated to

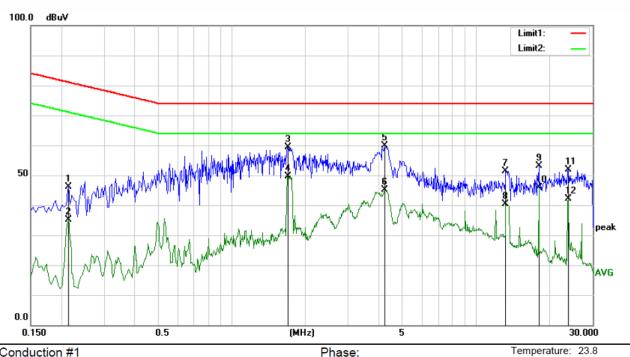
find out the maximum conducted emission according to the EN 55032 regulations during conducted emission measurement.

The bandwidth of the receiver is set at 9kHz in 150kHz~30MHz. The frequency range from 150kHz to 30MHz is investigated.

Test results were obtained from the following equation: Emission Level (dB μ V) = ANN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Emission Level (dB μ V) - Limit (dB μ V)

5.4. Measuring Results

PASS.


All the modes were tested and the data of the worst modes are attached the following pages.

Temperature : 23.8°C
Humidity : 46%
Atmospheric
Pressure : 101kpa
Test Engineer : HSY
Test Date : 2024-12-09

Humidity:

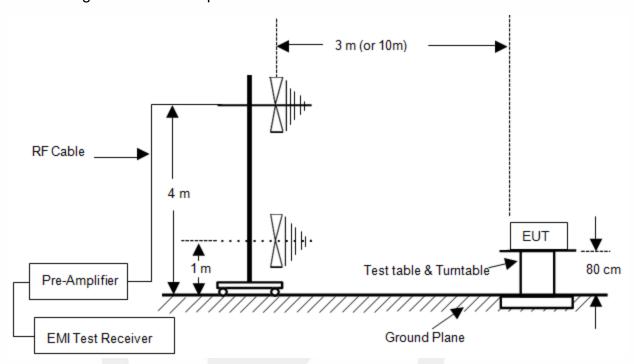
46 %

Power: AC 230V/50Hz

Site Conduction #1

Limit: (CE)EN55032 class B TELECOM_QP

Mode: IP Ping


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2140	35.61	10.41	46.02	81.05	-35.03	QP	
2		0.2140	24.78	10.41	35.19	71.05	-35.86	AVG	
3		1.7020	49.52	9.94	59.46	74.00	-14.54	QP	
4		1.7020	39.71	9.94	49.65	64.00	-14.35	AVG	
5	*	4.2460	50.12	9.77	59.89	74.00	-14.11	QP	
6		4.2460	35.46	9.77	45.23	64.00	-18.77	AVG	
7		13.2660	41.76	9.60	51.36	74.00	-22.64	QP	
8		13.2660	30.66	9.60	40.26	64.00	-23.74	AVG	
9		18.0780	43.60	9.53	53.13	74.00	-20.87	QP	
10		18.0780	36.27	9.53	45.80	64.00	-18.20	AVG	
11		23.8660	42.36	9.55	51.91	74.00	-22.09	QP	
12		23.8660	32.46	9.55	42.01	64.00	-21.99	AVG	

6. RADIATED EMISSION MEASUREMENT (UP TO 1 GHz)

6.1. Block Diagram of Test Setup

6.2. Radiated Limit

EN 55032, Class B

Frequency range		Measurement				
MHz	Facility	Distance (m)	Detector type / bandwidth	dB(μV/m)		
30 to 230	OATS/SAC	10		30		
230 to 1 000	OATS/SAC	10	Quasi Peak / 120 kHz	37		
30 to 230	OATS/SAC	2	Quasi Peak / 120 kmz	40		
230 to 1 000	OATS/SAC	3		47		

6.3. Test Procedure

The EUT was placed on a non-conductive table whose total height equaled 80cm. All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

The EUT was set 3 meters (or 10 meters) away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

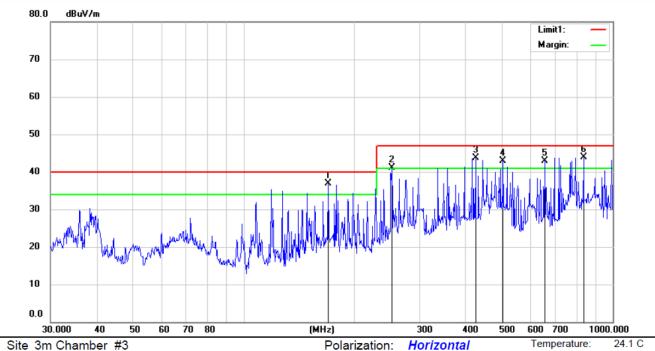
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The bandwidth of the Receiver is set at 120 kHz.

Test results were obtained from the following equation: Emission level (dB μ V/m) = Antenna Factor -Amp Factor +Cable Loss + Reading Margin (dB) = Emission Level (dB μ V/m) - Limit (dB μ V/m)

6.4. Measuring Results

PASS.


All the modes were tested and the data of the worst modes are attached the following pages.

Temperature : 24.1°C Humidity : 56% Atmospheric : 101kpa

Pressure : ICI

Test Date : 2024-12-06

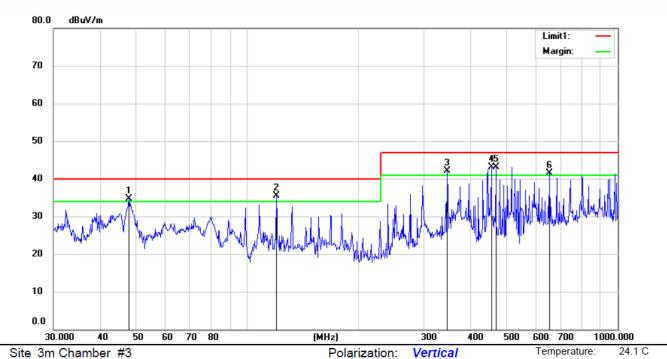
Site 3m Chamber #3

Limit: (RE)EN55032 class B Mode:ON

Note:

No.	M	k. Freq	Reading . Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	ļ	169.5990	53.34	-16.47	36.87	40.00	-3.13	QP			
2	ļ	252.0627	7 54.48	-13.40	41.08	47.00	-5.92	QP			
3	ļ	425.0280	51.65	-8.04	43.61	47.00	-3.39	QP			
4	İ	504.7062	49.29	-6.34	42.95	47.00	-4.05	QP			
5	ļ	654.2318	45.84	-2.90	42.94	47.00	-4.06	QP			
6	*	833.3170	42.42	1.48	43.90	47.00	-3.10	QP			

Power: AC 230V/50Hz


56 %

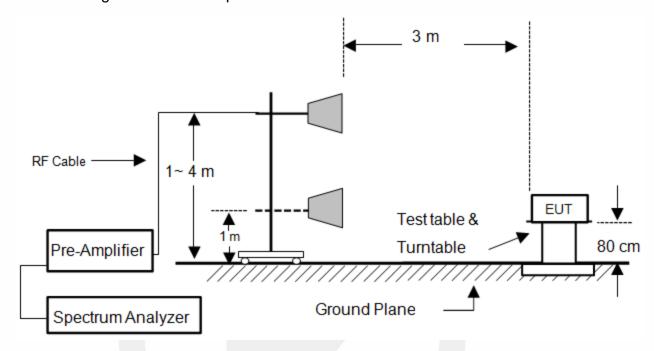
Humidity:

Humidity:

56 %

Limit: (RE)EN55032 class B

Mode:ON Note:


No.	MŁ	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	ļ	47.9940	49.02	-14.23	34.79	40.00	-5.21	QP			
2	ļ	119.8556	52.09	-16.53	35.56	40.00	-4.44	QP			
3	İ	346.8092	52.14	-10.11	42.03	47.00	-4.97	QP			
4	*	455.9058	50.68	-7.48	43.20	47.00	-3.80	QP			
5	ļ	468.8762	50.34	-7.17	43.17	47.00	-3.83	QP			
6	ļ	654.2318	44.45	-2.90	41.55	47.00	-5.45	QP			

Power: AC 120V/60Hz

7. RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz)

7.1. Block Diagram of Test Setup

7.2. Radiated Limit

EN 55032, Class B

Frequency range		Class B limits			
(MHz)	Facility	Facility Distance (m) Detector type/ bandwidt		dB(μV/m)	
1000 to 6000			Average / 1 MHz	54	
1000 to 6000	FSOATS	3	Peak /1 MHz	74	

Note: The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

7.3. Test Procedure

The EUT was placed on a non-conductive table whose total height equaled 80cm. All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

The EUT was set 3 meters away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

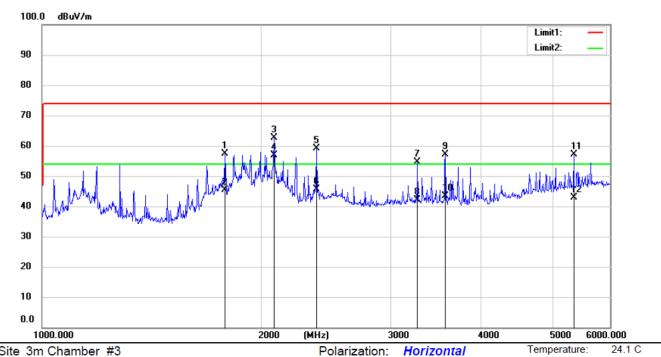
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz.

Test results were obtained from the following equation: Emission level ($dB\mu V/m$) = Antenna Factor -Amp Factor +Cable Loss + Reading Margin (dB) = Emission Level ($dB\mu V/m$) - Limit ($dB\mu V/m$)

7.4. Measuring Results

PASS


All the modes were tested and the data of the worst modes are attached the following pages.

Temperature : 24.1°C
Humidity : 56%
Atmospheric
Pressure : 101kpa
Test Engineer : LCJ
Test Date : 2024-12-06

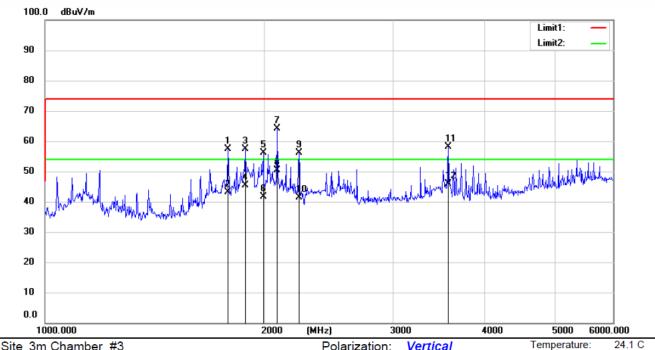
Humidity:

56 %

Power: AC 230V/50Hz

Site 3m Chamber #3

Limit: (RE)EN55032 class B


Mode:ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	780.593	69.94	-12.67	57.27	74.00	-16.73	peak			
2	1	780.593	57.97	-12.67	45.30	54.00	-8.70	AVG			
3	2	077.235	74.20	-11.47	62.73	74.00	-11.27	peak			
4	* 2	077.235	68.27	-11.47	56.80	54.00	2.80	AVG			
5	2	376.003	69.60	-10.47	59.13	74.00	-14.87	peak			
6	2	376.003	56.07	-10.47	45.60	54.00	-8.40	AVG			
7	3	268.571	63.00	-8.38	54.62	74.00	-19.38	peak			
8	3	268.571	50.48	-8.38	42.10	54.00	-11.90	AVG			
9	3	568.514	64.76	-7.71	57.05	74.00	-16.95	peak			
10	3	568.514	51.01	-7.71	43.30	54.00	-10.70	AVG			
11	5	349.948	59.22	-2.13	57.09	74.00	-16.91	peak			
12	5	349.948	44.93	-2.13	42.80	54.00	-11.20	AVG			

Humidity:

56 %

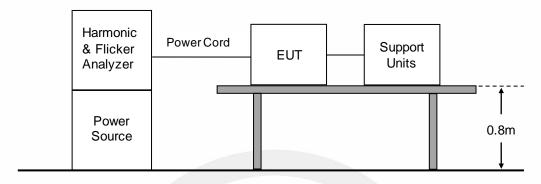
Polarization:

Power: AC 230V/50Hz

Vertical

Site 3m Chamber #3

Limit: (RE)EN55032 class B


Mode:ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	780.593	70.01	-12.67	57.34	74.00	-16.66	peak			
2	1	780.593	55.87	-12.67	43.20	54.00	-10.80	AVG			
3	1	878.924	67.14	-9.80	57.34	74.00	-16.66	peak			
4	1	878.924	55.10	-9.80	45.30	54.00	-8.70	AVG			
5	1	1989.803	67.73	-11.48	56.25	74.00	-17.75	peak			
6	1	1989.803	53.08	-11.48	41.60	54.00	-12.40	AVG			
7	2	2077.235	75.70	-11.47	64.23	74.00	-9.77	peak			
8	* 2	2077.235	61.77	-11.47	50.30	54.00	-3.70	AVG			
9	2	2227.581	67.12	-10.97	56.15	74.00	-17.85	peak			
10	2	2227.581	52.47	-10.97	41.50	54.00	-12.50	AVG			
11	3	3568.514	65.95	-7.71	58.24	74.00	-15.76	peak			
12	3	3568.514	53.51	-7.71	45.80	54.00	-8.20	AVG			

8. HARMONIC CURRENT EMISSION MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Standard Limits

EN IEC 61000-3-2, CLASS D

Harmonic current emissions evaluate the potential for the EUT to cause distortion on the AC power lines. It is applicable to electrical and electronic equipment having an input current≤16 A per phase, and intended to be connected to public low-voltage distribution systems

Table 3 – Limits for Class D equipment

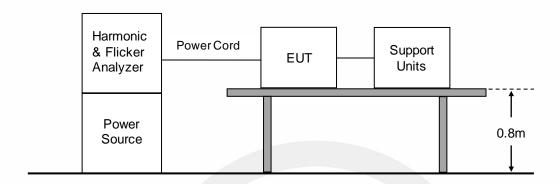
Harmonic order	Maximum permissible harmonic current per watt	Maximum permissible harmonic current
n	mA/W	Α
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
13 ≤ n≤39 (odd harmonics only)	3.85/n	See Table 1

8.3. Test Procedure

The measurement of harmonic currents shall be performed as follows: i. For each harmonic order, measure the 1.5 s smoothed r.m.s. harmonic current in each DFT time window as defined in EN / IEC 61000-4-7:2009. ii. Calculate the arithmetic average of the measured values from the DFT time windows, over the entire observation period Short cyclic (T cycle≤2.5 min). Because of synchronisation to meet the requirements for repeatability in 5%.

8.4. Test Results

N/A.


As specified on section 7 and above figure of EN 61000-3-2, the limits are not specified for equipment with a rated power of 75W or less. The EUT meets the above condition, so it conforms to EN 61000-3-2.

9. VOLTAGEFLUCTUATION AND FLICKER MEASUREMENT

9.1. Block Diagram of Test Setup

9.2. Standard Limits

EN 61000-3-3 Limits

The objective of voltage changes, voltage fluctuations and flicker in public low voltage supply systems during equipment with rated current≤16 A per phase, ensures that home appliances and certain other electrical equipment do not adversely affect lighting equipment when connected to the same power system.

Voltage Fluctuation and Flicker Limits:

- the value of Pst shall not be greater than 1.0;
- the value of Plt shall not be greater than 0.65;
- the value of d(t) during a voltage change shall not exceed 3.3 % for more than 500 ms;
- the relative steady-state voltage change, dc, shall not exceed 3.3 %;
- the maximum relative voltage change, dmax, shall not exceed 4.0 %;

9.3. Test Procedure

The total impedance of the test circuit, excluding the appliance under test, but including the internal impedance of the supply source, shall be equal to the reference impedance. The stability and tolerance of the reference impedance shall be adequate to ensure that the overall accuracy of 8% is achieved during the whole assessment procedure.

9.4. Test Results

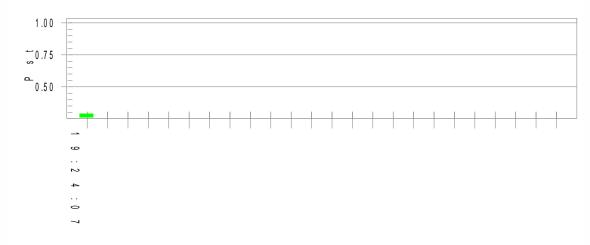
PASS.

Please see the attached page.

Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: CM3588S system-on-module
Test date: 2024/12/11
Start time: 19:13:46
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 2024/12/11
Test date: 19:13:46
Test date: 2024/12/11
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:46
Test date: 19:13:

Test duration (min): 10 Data file name: CTSMXL_F-000877.cts_data


Comment: Running With Full Systems

Customer: BOARDCON EMBEDDED DESIGN LIMITED

Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.34

T-max (mS):	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (`%):	3.30	Pass
Highest dmax (%):	0.04	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.288	Test limit:	1.000	Pass

10.IMMUNITY PERFORMANCE CRITERIA DESCRIPTION

General performance criteria are defined in EN 55035 clause 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary functions where no relevant annex is applicable.

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

EN 55035:

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

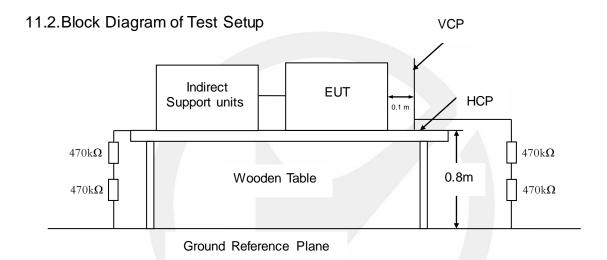
After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

11.ELECTROSTATIC DISCHARGE


11.1.Test Specification

Test standard : EN 55035
Basic standard : IEC 61000-4-2

Performance criterion : B

: ±8.0kV (Air discharge)

±4.0kV (Contact discharge)

11.3.Test Procedure

- a. In the case of air discharge testing, the climatic conditions shall be within the following ranges:
- ambient temperature: 15°C to 35°C;
- relative humidity: 30% to 60%;
- atmospheric pressure: 86 kPa (860 mbar) to 106 kPa (1060 mbar)
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT. The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.
- c. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- d. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted: If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate. Coating declared as insulating by the manufacturer shall only be submitted to the air discharge. The contact discharge test shall not be applied to such surfaces.
- e. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.
- f. The test voltage shall be increased from the minimum to the selected test severity level, in order to

determine any threshold of failure. The final test level should not exceed the product specification value in order to avoid damage to the equipment.

g. The test shall be performed with both air discharge and contact discharge. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied. For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred. h. Ensure that the applied charge on the EUT has been dis-charged before next ESD pulse.

11.4.Test Results

PASS

Temperature : 21.6°C
Humidity : 49%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

Air Discharge:

Test Voltage	Location	Actual criterion	Required performance criterion	Result (Pass/Fail)
±2; 4; 8 kV	SLOT/HDMI/LAN/ USB/TYPE-C /AUDIO	В	В	Pass

Contact Discharge

Test Voltage	Location	Actual criterion	Required performance criterion	Result (Pass/Fail)
±2; 4kV	METAL/HDMI/LA N/USB/TYPE-C	A	В	Pass

Indirect Discharge

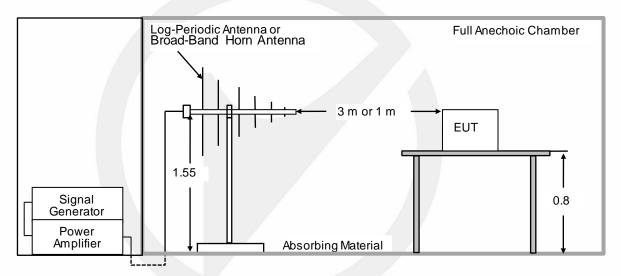
Test Voltage	Location	Actual criterion	Required performance criterion	Result (Pass/Fail)
±2; 4 kV	HCP	А	В	Pass
±2; 4kV	VCP	А	В	Pass

12. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES

12.1.Test Specification

Test standard : EN 55035
Basic standard : IEC 61000-4-3

Performance criterion : A


Frequency range & : ⊠80M-1000MHz 3V/m

Test level ⊠Spot frequency 3V/m

□ Additional spot frequency 3V/m

Modulation : AM, 80%, 1kHz sine-wave

12.2.Block Diagram of Test Setup

12.3. Test procedure

The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels. To comply with local regulations and to prevent biological hazards to the testing personnel, it is recommended that these tests be carried out in a shielded enclosure or semi-anechoic chamber.

a. The antenna which is enabling the complete frequency range of 80-1000 MHz is placed 3m (or 1m) away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the antenna. b. The test is performed with the antenna facing the front and back sides of the EUT with. Both vertical and horizontal polarizations from antenna are tested.

12.4. Test results

PASS

Temperature : 22.4°C
Humidity : 48%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

⊠ 80M-1000MHz:

Freq. Range (MHz)	Field	Modulation	Polarity	Position (°)	Actual criterion	Required performance criterion	Result
80-1000	3V/m	AM, 80%	H/V	0, 90,180, 270	Α	Α	Pass

Freq (MHz)	Field	Modulation	Polarity	Position (°)	Actual criterion	Required performance criterion	Result
1800, 2600, 3500, 5000	3V/m	AM, 80%	H/V	0, 90,180, 270	Α	Α	Pass

☐ Additional spot frequency:

Freq (MHz)	Field	Modulation	Polarity	Position (°)	Actual criterion	Required performance criterion	Result
80, 120, 160, 230, 434, 460, 600, 863, 900		AM, 80%	H/V	0, 90,180, 270	N/A	А	N/A

13.ELECTRICAL FAST TRANSIENTS/BURST

13.1.Test Specification

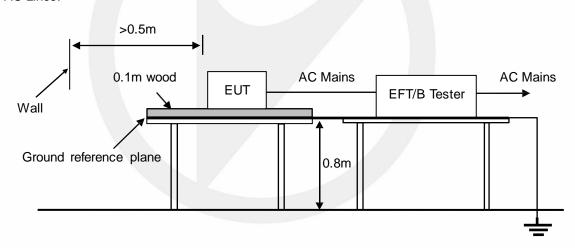
Test standard : EN 55035 Basic standard : IEC 61000-4-4

Performance criterion : B

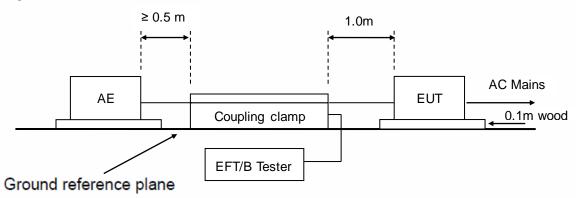
Test level : ⊠1kV, AC mains power ports

□ 0.5kV, DC network power ports □ 0.5kV, Analogue/digital data ports

Repetition frequency: ⊠5kHz, □100kHz(Only xDSL ports)


 Tr/Th:
 : 5/50ns

 Burst period
 : 300ms


 Test time :
 : 120s

13.2. Block Diagram of Test Setup

AC Lines:

Signal lines:

13.3.Test Procedure

The EUT is put on the table that is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

13.4. Test Results

PASS

Temperature : 21.6°C
Humidity : 51%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

Injection Line	Voltage (kV)	Injected Method	Actual criterion	Required performance criterion	Result (Pass/Fail)
□ AC mains power ports	± 1	☑ CDN☑ Direct injection☑ Capacitive coupling clamp	Α	В	Pass
☐ DC network power ports	± 0.5	☐ CDN ☐ Direct injection ☐ Capacitive coupling clamp	N/A	N/A	N/A
Analogue/digital data ports (Wired network port)	± 0.5	☐ CDN☐ Direct injection☑ Capacitive coupling clamp	Α	В	Pass
Analogue/digital data ports (Broadcast receiver tuner port)	± 0.5	☐ CDN ☐ Direct injection ☑ Capacitive coupling clamp	N/A	N/A	N/A

14.SURGES

14.1.Test Specification

Test standard : EN 55035 Basic standard : IEC 61000-4-5

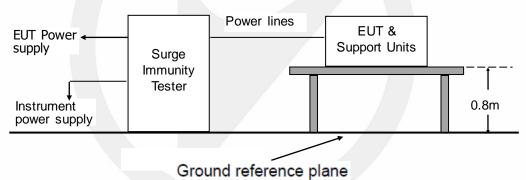
Test level : ⊠1kV, Line to Line, AC mains power ports, Criterion B

☐2kV, Line to Earth, AC mains power ports, Criterion B

□ 0.5kV, Line to Reference ground, DC network power ports, Criterion B

 ∆1.0kV, Lines to Ground, Unshielded symmetrical, Criterion C

 ∆4.0kV, Lines to Ground, Unshielded symmetrical, Criterion C


 0.5kV, Shield to ground, Coaxial or shielded port, Criterion B

Number of surges : 5 (for each combination of parameters)

Repetition rate : 1 minute / time
Polarity: : Positive / Negative

Phase angle: 90°, 270° (Only AC mains power ports)

14.2. Block Diagram of Test Setup

14.3.Test Procedure

This test simulates a lightning event by inducing transients onto the AC/DC power supply lines in common mode (Line to Ground) and differential mode (Line to Line). Each device was tested in a total of two surge configurations: Line to Ground (L-G): Combination Wave, Line to Protective Earth with 9uF and 10Ohm and Neutral to Protective Earth with 9uF and 10Ohm, common mode, generator earthed.

Line to Line (L-L): Combination Wave,

Line to Neutral with 18uF, differential mode, generator floated.

2 ohm: the source impedance of the low-voltage power supply network.

12 ohm: the source impedance of the low-voltage power supply network and ground.

- a. If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the a.c. voltage wave (positive and negative).
- b. The surges have to be applied line to line and line to earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- c. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan. All lower levels including the selected test level shall be satisfied.
- d. For testing the secondary protection, the output voltage of the generator shall be increased up to the worst-case voltage breakdown level (let-through level) of the primary protection.
- e. Testing shall be performed according to a Test Plan, which shall be included in the test report.

f. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied.

14.4.Test results

PASS

Temperature : 21.6°C
Humidity : 51%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

□ AC mains power ports:

Coupling Line	Voltage (kV)	Waveform (µs)	Polarity	Actual criterion	Required performance criterion	Result (Pass/Fail)
□ Line to line	0.5, 1	1.2/50 (8/20)	Pos./ Neg.	Α	В	Pass
☐ Line to earth	0.5, 1, 2	1.2/50 (8/20)	Pos./ Neg.	N/A	В	N/A

☐ DC network power ports:

Coupling Line	Voltage (kV)	Waveform (μs)	Polarity	Actual criterion	Required performance criterion	Result (Pass/Fail)
Line to Reference ground	0.5	1.2/50 (8/20)	Pos./ Neg.	N/A	В	N/A

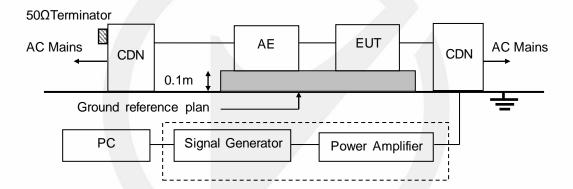
Port type	Coupling Line	Voltage (kV)	Waveform (µs)	Polarity	Actual criterion	Required performance criterion	Result (Pass/Fail)
☐ Unshielded symmetrical (Wired network port)	Lines to ground	0.5, 1	10/700 (5/320)	Pos./ Neg.	A	С	Pass
Unshielded symmetrical ()	Lines to ground	0.5, 1	10/700 (5/320)	Pos./ Neg.	N/A	С	N/A
☐ Unshielded symmetrical	Lines to ground	0.5, 1, 2, 4	10/700 (5/320)	Pos./ Neg.	N/A	С	N/A
Coaxial or shielded ()	Shield to ground	0.5	1.2/50 (8/20)	Pos./ Neg.	N/A	С	N/A

15. CONTINUOUS INDUCED RF DISTURBANCES

15.1.Test Specification

Test standard : EN 55035
Basic standard : IEC 61000-4-6

Performance criterion : A


Frequency range & : 0.15M to 10MHz, 3V Test level : 0.15M to 30MHz, 3V to 1V

30M to 80MHz, 1V

Modulation : AM 80%, 1kHz sine-wave

Frequency Step : 1% of fundamental

15.2.Block Diagram of Test Setup

15.3. Test Procedure

- a. The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- b. The EUT is placed on a 0.1m high test table, and a well grounded cable is connected to metallic plane above the test table.
- c. All cables/wires must be laid out on test plate (3cm in thickness), and the EUT is set up on test plate (10 cm in thickness) as shown in test setup photo, and the cables/wires must not be in mid-air, they should be touching the surface of test plate. Ensure that the EUT is properly connected to the accessory equipment.
- d. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- e. The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10-3 decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.
- f. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency (ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- g. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility

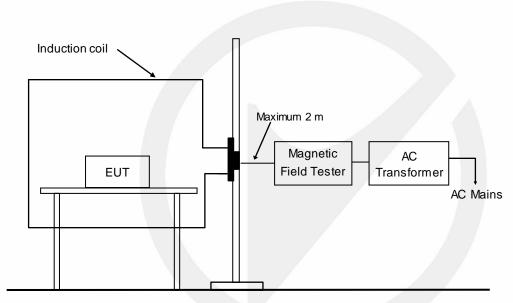
h. Testing shall be performed according to a Test Plan, which shall be included in the test report.

15.4. Test results

PASS

Temperature : 21.6°C
Humidity : 51%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

Range (MHz)	Levers (V)	Injection port	Coupling type	Actual criterion	Required performance criterion	Result (Pass/Fail)	
0.15-10	3		⊠CDN				
10-30	3-1	☑AC mains power ports	☐EM Clamp ☐Current Clamp	Α	А	Pass	
30-80	1		☐ Direct injection				
0.15-10	3		⊠CDN	N/A			
10-30	3-1	DC network power ports	☐EM Clamp ☐Current Clamp		N/A	N/A	
30-80	1		☐ Direct injection				
0.15-10	3	⊠Analogue/digital data	□ CDN □ EM Clamp □ Current Clamp	A			
10-30	3-1	ports			Α	Pass	
30-80	1	(Wired network port)	☐ Direct injection				
0.15-10	3	☐ Analogue/digital data	□CDN				
10-30	3-1	ports (Broadcast receiver tuner	☐ EM Clamp ☐ Current Clamp	N/A	N/A	N/A	
30-80	1	port)	☐ Direct injection				
0.15-10	3	☐ Analogue/digital data	□CDN				
10-30	3-1	ports	☐EM Clamp ☑Current Clamp	N/A	N/A	N/A	
30-80	1	()	☐ Direct injection				


16.POWER FREQUENCY MAGNETIC FIELD

16.1.Test Specification

Test Standard : EN 55035 Basic Standard : IEC 61000-4-8

Performance criterion : A
Test level : 1A/m

16.2. Block Diagram of Test Setup

EUT: Equipment under test

16.3.Test Procedure

The EUT is placed in the middle of a induction coil (1*1m), under which is a 1*1*0.1m (high) table, this small table is also placed on a larger table, 0.8 m above the ground. Both horizontal and vertical polarization of the induction coil is set on test, so that each side of the EUT is affected by the magnetic field. Also can reach the same aim by change the position of the EUT.

16.4. Test Results

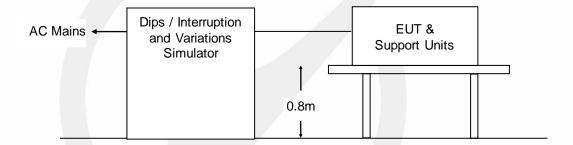
PASS

Temperature : 21.6°C
Humidity : 51%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

Test Level (A/m)	Frequency	Testing Duration	Coil Orientation	Actual criterion	Required performance criterion	Result (Pass/Fail)
1	⊠ 50Hz ⊠ 60Hz	5 mins	X x-axisy-axisz-axis	А	А	Pass

17. VOLTAGE DIPS AND INTERRUPTIONS

17.1.Test Specification


Test standard : EN 55035

Basic standard : IEC 61000-4-11

Test level : 0%, 0.5 period, Criterion B

⊠70%, 25 periods for 50Hz, Criterion C
⊠70%, 30 periods for 60Hz, Criterion C
⊠0%, 250 periods for 50Hz, Criterion C
⊠0%, 300 periods for 60Hz, Criterion C

17.2. Block Diagram of Test Setup

17.3. Test Procedure

- a. Where the equipment has a rated voltage the following shall apply If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for test level specification.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.
- b. Test Conditions
- Select operated voltage and frequency of EUT Test of interval : 10 sec.
- Level and duration : Sequence of 3 dips/interrupts.
- Voltage rise (and fall) time : 1.5 μs .

17.4. Test results

PASS

Temperature : 21.6°C
Humidity : 51%
Atmospheric Pressure : 101kpa
Test Engineer : WZY
Test Date : 2024-12-11

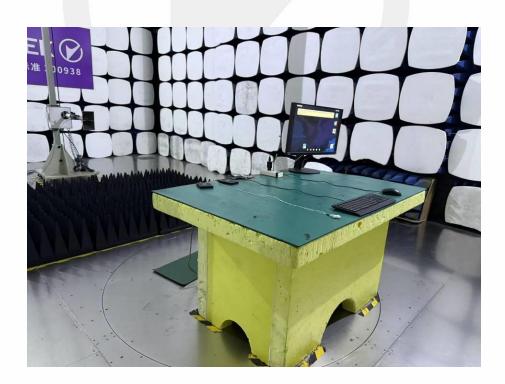
	Test Level (% UT)	Phase angle (°)	Input Voltage (V)	Freq (Hz)	Duration (periods)	Actual criterion	Required performance criterion	Result (Pass /Fail)
⊠ Voltage dips	0%	0°, 180°	AC 230V	50	0.5	А	В	Pass
☑Voltage dips	70%	0°, 180°	AC 230V	50	25	А	С	Pass
☑ Voltage interruptions	0%	0°, 180°	AC 230V	50	250	В	С	Pass
⊠ Voltage dips	0%	0°, 180°	AC 120V	60	0.5	А	В	Pass
⊠ Voltage dips	70%	0°, 180°	AC 120V	60	30	А	С	Pass
⊠ Voltage interruptions	0%	0°, 180°	AC 120V	60	300	В	С	Pass

Note: When it falls to 0%, 250P, the prototype is powered off. After the test, it can automatically return to normal.

18.PHOTOGRAPHS

18.1. Photos of Conducted Emissions from the AC Mains Power Ports

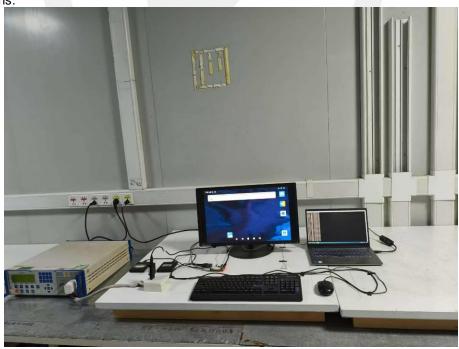
18.2. Photos of Asymmetric Mode Conducted Emissions at Wired Network Ports



18.3. Photos of Radiation Emission Measurement

18.4. Photo of Harmonic / Flicker Measurement

18.5. Photo of Electrostatic Discharges



18.6. Photos of Continuous RF Electromagnetic Field Disturbances

18.7. Photo of Electrical Fast Transients/Burst

AC Mains:

Analogue/digital data ports:

18.8.Photo of Surges

AC Mains:

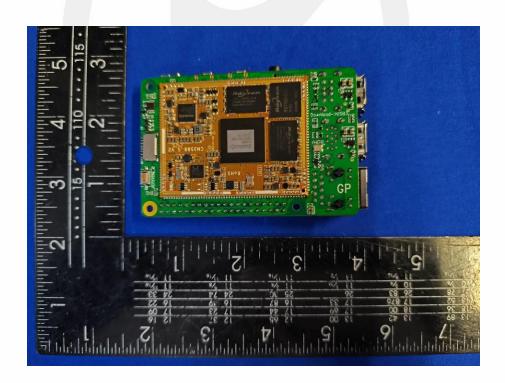
Analogue/digital data ports:

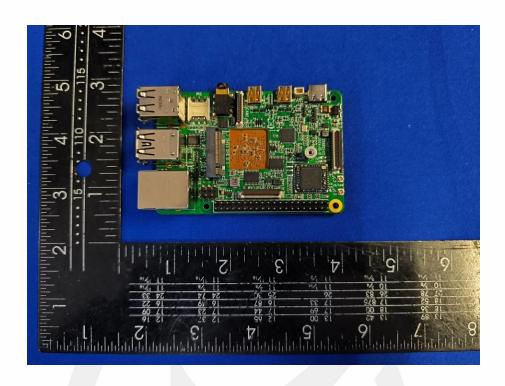
18.9. Photos of Continuous Induced RF Disturbances

AC Mains:

Analogue/digital data ports:

18.10.Photo of Power Frequency Magnetic Field


18.11. Photo of Voltage Dips and Interruptions



APPENDIX (PHOTOS OF EUT)

End of Report

Statement

1 .	This report is invalid	without the	signature	of the authorized	approver and	"special seal for
	testing".					

- 2. This report shall not be copied partly without authorization.
- 3 . The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 4. The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
- 5. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.
- 6. Objections shall be raised within 20 days from the date receiving the report.